Antiarrhythmic Effect of Nifekalant on Atrial Tachyarrhythmia in Four Patients With Severe Heart Failure

Tsuyoshi SHIGA, MD
Naoki MATSUDA, MD
Yuji FUDA, MD
Shoji HARUTA, MD
Nobuhisa HAGIWARA, MD
Hiroshi KASANUKI, MD, FJCC

Objectives. Nifekalant is a class ᵟ antiarrhythmic drug, which prolongs the refractory period of the atrial and ventricular myocardium, without negative inotropic action. Intravenous nifekalant was administered in four patients with atrial tachyarrhythmia and severe heart failure to terminate or prevent atrial tachyarrhythmia.

Methods and Results. Two of three episodes of atrial tachyarrhythmia were terminated by intravenous nifekalant (0.22 to 0.30 mg/kg/hr) administration. Continuous intravenous infusion of nifekalant (0.15 to 0.40 mg/kg/hr) during six episodes to maintain the sinus rhythm, prevented recurrence of atrial tachyarrhythmia in five episodes in which prolongation of the QTc interval was observed to more than 450 msec. None of the patients showed worsening of the hemodynamics during treatment. One patient developed polymorphic ventricular tachycardia, which deteriorated into ventricular fibrillation.

Conclusions. Nifekalant may be effective for treating atrial tachyarrhythmia in patients with severe heart failure. Further clinical studies are needed to confirm these findings.

Key Words
- Antiarrhythmic agents (nifekalant)
- QT interval
- Atrial fibrillation
- Atrial flutter
- Heart failure

INTRODUCTION

Atrial tachyarrhythmia such as atrial fibrillation and flutter often occur as complications of heart failure. Uncontrolled atrial fibrillation reduces the ventricular filling time, worsens the heart failure, and provokes tachycardiomyopathy. The absence of atrial contraction and irregularity of the ventricular rhythm also contribute to worsening of heart failure. Therefore, prevention or conversion of atrial tachyarrhythmia to sinus rhythm is important in the management of heart failure. Many class ᵟ antiarrhythmic agents can convert atrial fibrillation and maintain sinus rhythm by slowing the conduction velocity. However, these agents may also worsen heart failure because they have significant negative inotropic effects. In contrast, class ᵟ antiarrhythmic drugs prolong the action potential duration and increase the myocardial refractory period without negative inotropic effects, and are useful for the treatment of atrial fibrillation and flutter. Therefore, class ᵟ antiarrhythmic drugs are also expected to be useful for converting atrial fibrillation and flutter to sinus rhythm and maintaining the sinus rhythm in patients with heart failure.
Nifekalant (MS-551) is a new pure K channel blocker developed in Japan, which selectively inhibits the rapid component of the delayed rectifier potassium current (Ikr) as well as prolonging the refractory period of the atrial and ventricular myocardium. The pharmacokinetic characteristics of nifekalant are as follows: Urinary excretion ratio of the unchanged drug is approximately 30%, most of the drug promptly undergoes glucuronate conjugation in the liver, the elimination half-life of the unchanged drug is short at 1.5 hr, and the volume of distribution is small at 0.14 l/kg. Therefore, nifekalant is used as an intravenous administration and adjustment of the dose is relatively easy. To obtain a constant blood concentration, nifekalant must be administered at a constant rate by continuous intravenous infusion.

We studied the intravenous use of nifekalant in four patients with heart failure and worsened hemodynamics due to complicating atrial tachyarrhythmia.

SUBJECTS AND METHODS

The subjects were four patients with severe heart failure in New York Heart Association (NYHA) functional class I or II with atrial fibrillation or flutter or tachycardia (Table 1). All patients had ventricular tachycardia with structural heart disease, and the atrial fibrillation or flutter or tachycardia occurred during treatment for the heart failure. Termination and prevention of atrial tachyarrhythmia were required for treatment of refractory heart failure. Termination of three episodes of atrial fibrillation, flutter or tachycardia was attempted by a bolus injection of nifekalant in two patients (Cases 1 and 2). Nifekalant was administered by continuous intravenous infusion for the prevention of recurrence of atrial fibrillation, flutter or tachycardia in six episodes in all patients.

RESULTS

Two of three episodes of atrial tachyarrhythmia in Cases 1 and 2 were terminated following intravenous administration of nifekalant, bolus of 0.22 to 0.30 mg/kg over 5 to 10 min (Fig. 1). The other episode of atrial flutter in Case 1 required electrical cardioversion for termination (Fig. 2, Table 2). Continuous intravenous infusion of nifekalant was used in six episodes as soon as possible after termination. There were no recurrences of atrial tachyarrhythmia during nifekalant administration except one episode in Case 2, in whom recurrence was seen under a low dose (0.20 mg/kg/hr), but not when the dose was increased from 0.20 to 0.40 mg/kg/hr (Fig. 2, Table 2). The QTc intervals at sinus rhythm during continuous intravenous infusion were prolonged compared to those in sinus rhythm before the infusion of nifekalant. In the five episodes in which the recurrence of atrial tachyarrhythmia was not observed, the QTc interval with nifekalant was prolonged to more than 450 msec or more than 5% increase. In Case 2, the QTc interval with nifekalant was less than 450 msec before the recurrence of atrial fibrillation, but the QTc interval was prolonged to more than 450 msec and recurrence was not observed when the dose of nifekalant was increased (Fig. 3). In all patients, no sustained monomorphic ventricular tachycardia occurred during infusion of nifekalant. Table 3 shows the hemodynamic parameters in sinus rhythm before and during continuous infusion of nifekalant. In patients, no sustained monomorphic ventricular tachycardia occurred during infusion of nifekalant. Table 3 showed the hemodynamic parameters in sinus rhythm before and during continuous infusion of nifekalant. No patients showed worsening of hemodynamic factors during the infusion of nifekalant. Polymorphic ventricular tachycardia which deteriorated into ventricular fibrillation occurred during continuous infusion of nifekalant in Case 4, but no

Table 1 Clinical characteristics of four patients with severe heart failure and atrial tachyarrhythmia

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>Underlying heart disease</th>
<th>Atrial arrhythmia</th>
<th>NYHA</th>
<th>Plasma BNP (pg/ml)</th>
<th>LVEF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>Female</td>
<td>AMI</td>
<td>AF, sVT</td>
<td>II</td>
<td>Not performed</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>83</td>
<td>Female</td>
<td>AMI</td>
<td>AF, sVT</td>
<td>II</td>
<td>1.831</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>Male</td>
<td>DCM</td>
<td>AF, sVT</td>
<td>II</td>
<td>533</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>Female</td>
<td>DCM</td>
<td>AF, sVT</td>
<td>II</td>
<td>856</td>
<td>19</td>
</tr>
</tbody>
</table>

NYHA = New York Heart Association functional class; BNP = brain natriuretic peptide; LVEF = left ventricular ejection fraction; AMI = acute myocardial infarction; DCM = idiopathic dilated cardiomyopathy; AF = atrial fibrillation; sVT = sustained ventricular tachycardia; nVT = non-sustained ventricular tachycardia.
recurrence of polymorphic ventricular tachycardia or fibrillation was observed after discontinuation of nifekalant.

DISCUSSION

Two mechanisms are considered to underpin the potential clinical benefits of nifekalant in atrial fibrillation or flutter or tachycardia in patients with severe heart failure. First, nifekalant prolongs the repolarization and refractoriness of the atrial and ventricular myocardium. Atrial fibrillation causes time-dependent decreases in both the effective refractory period and the conduction velocity, resulting in decreased wavelength, which, together with increased regional heterogeneity, provides the substrate for sustained atrial fibrillation. Nifekalant can prolong refractoriness without slowing the conduction velocity and may be effective for termination and prevention of atrial fibrillation and flutter. However, experimental and electrophysiological studies have suggested that class 3 antiarrhythmic drugs might be as effective in the termination of atrial fibrillation as nifekalant and the efficacy of intravenous nifekalant for conversion of paroxysmal atrial fibrillation or flutter in patients of NYHA functional classes I and II, including lone atrial fibrillation.

Fig. 1 Termination of atrial tachycardia by nifekalant administration in a patient with congestive heart failure: Case 1

Intravenous nifekalant converted multifocal atrial tachycardia with rapid atrial rate to atrial tachycardia with slow atrial rate, followed by termination.

Fig. 2 Efficacy of nifekalant for the termination or prevention of atrial tachyarrhythmia in patients with severe heart failure.
were observed in only 13% (30%) of 44 cases. A recent experimental study using epicardial mapping showed that congestive heart failure, but not rapid atrial pacing, related to atrial fibrillation was often due to macroreentry, with dofetilide, a pure K channel blocker, causing termination by blocking the reentry circuits. Nifekalant would also increase the wavelength and contribute to the termination and prevention of atrial fibrillation or flutter concomitant with heart failure. We found that intravenous nifekalant changed atrial flutter or multifocal atrial tachycardia with a rapid atrial rate to atrial tachycardia of longer cycle length and caused termination in some cases.

Pure K channel blockers have little or no effect for inducing negative inotropic effects. Once heart failure has occurred, atrial fibrillation and flutter can be triggered through an increase in atrial pressure and volume loads. Experimental models show that when the atrial muscle is stretched, atrial tachyarrhythmia is also induced by a reduced atrial refractory period and an increased vulnerability to atrial fibrillation. Nifekalant did not worsen the hemodynamics in all patients, and this benefit may also be involved in the antiarrhythmic effect.

Nifekalant prolongs the action potential duration by its K channel blocking action and also prolongs the QT interval, so the effect can be estimated by observing the QT interval. In our four patients, pre-

Table 2 Efficacy of nifekalant for the termination or prevention of atrial tachyarrhythmia in patients with severe heart failure

<table>
<thead>
<tr>
<th>Case</th>
<th>Rhythm</th>
<th>Heart rate (beats/min)</th>
<th>Duration</th>
<th>Dose</th>
<th>Termination</th>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AT</td>
<td>170</td>
<td>25 min</td>
<td>0.30 mg/kg bolus then 0.15 mg/kg/hr</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AF</td>
<td>160</td>
<td>30 min</td>
<td>0.22 mg/kg bolus then 0.15 mg/kg/hr</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>AT</td>
<td>100</td>
<td>30 min</td>
<td>0.25 mg/kg bolus then 0.20 mg/kg/hr</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>AF</td>
<td>100</td>
<td>28 min</td>
<td>0.40 mg/kg/hr</td>
<td>Not performed</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 3 Hemodynamic parameters in sinus rhythm before and during infusion of nifekalant in patient with severe heart failure and atrial tachyarrhythmia

<table>
<thead>
<tr>
<th>Case</th>
<th>Episode</th>
<th>Blood pressure (mmHg)</th>
<th>Cardiac index (l/min/m²)</th>
<th>MPA (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>During</td>
<td>Before</td>
<td>During</td>
</tr>
<tr>
<td>1</td>
<td>AT</td>
<td>90/40</td>
<td>90/50</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>80/50</td>
<td>90/64</td>
<td>Not performed</td>
</tr>
<tr>
<td>2</td>
<td>AT</td>
<td>70/40</td>
<td>92/48</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>60/40</td>
<td>94/50</td>
<td>Not performed</td>
</tr>
<tr>
<td>3</td>
<td>AT</td>
<td>50/40</td>
<td>90/50</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>AF</td>
<td>40/40</td>
<td>120/60</td>
<td>Not performed</td>
</tr>
</tbody>
</table>

* = Preformed ** = Not performed*** = Not performed

Fig. 3 Change in QTc interval of sinus rhythm before and during continuous intravenous infusion of nifekalant in six episodes to prevent atrial tachyarrhythmia.
ventive effect against atrial tachyarrhythmia was observed during five episodes with prolongation of the QTc interval to more than 450 msec or more than 5% increase, although the QT interval did not always reveal the atrial refractoriness. QT interval may be helpful for the assessment of effect. Nifekalant, a pure Ikr channel blocker, exhibits selective prolongation and reverse use-dependent actions on myocardial repolarization and refractoriness, which may predispose the patient to the development of torsade de pointes as a proarrhythmic reaction. Monitoring of the QT interval is necessary during infusion of nifekalant for safety.

This study consisted of only four cases, so we cannot definitively conclude that nifekalant is useful for the management of atrial tachyarrhythmia in patients with severe heart failure. However, nifekalant apparently acts on the termination and prevention of atrial tachyarrhythmia in patients with severe heart failure. Further clinical studies are needed to confirm these findings.

CONCLUSIONS

Two of three episodes of atrial tachyarrhythmia were terminated and no recurrence was observed in five of six episodes during intravenous nifekalant infusion in four patients with severe heart failure. Nifekalant may be effective in treating atrial tachyarrhythmia in patients with severe heart failure. However, further clinical studies are needed to confirm these findings.

